5 research outputs found

    JWST PEARLS. Prime Extragalactic Areas for Reionization and Lensing Science: Project Overview and First Results

    Get PDF
    We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 ÎŒm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 ÎŒm. PEARLS is designed to be of lasting benefit to the community

    Ground-based and JWST Observations of SN 2022pul: II. Evidence from Nebular Spectroscopy for a Violent Merger in a Peculiar Type-Ia Supernova

    No full text
    International audienceWe present an analysis of ground-based and JWST observations of SN 2022pul, a peculiar "03fg-like" (or "super-Chandrasekhar") Type Ia supernova (SN Ia), in the nebular phase at 338 d post explosion. Our combined spectrum continuously covers 0.4-14 ÎŒ\mum and includes the first mid-infrared spectrum of an 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. Strong, broad, centrally peaked [Ne II] at 12.81 ÎŒ\mum was previously predicted as a hallmark of "violent merger'' SN Ia models, where dynamical interaction between two sub-MChM_{\text{Ch}} white dwarfs (WDs) causes disruption of the lower mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the central ejecta to better reproduce the optical iron emission, and add mass in the innermost region (<2000< 2000 km s−1^{-1}) to account for the observed narrow [O I] λλ6300\lambda\lambda6300, 6364 emission. A violent WD-WD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SN Ia

    Ground-based and JWST Observations of SN 2022pul: I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova

    No full text
    International audienceNebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground-based and space-based follow-up campaign to characterize SN 2022pul, a "super-Chandrasekhar" mass SN Ia (alternatively "03fg-like" SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon-oxygen rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB=−18.9M_{B}=-18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peak BB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [O I] λλ6300, 6364\lambda\lambda 6300,\ 6364 (FWHM≈2,000{\rm FWHM} \approx 2{,}000 km s−1^{-1}), strong, broad emission from [Ca II] λλ7291, 7323\lambda\lambda 7291,\ 7323 (FWHM≈7,300{\rm FWHM} \approx 7{,}300 km s−1^{-1}), and a rapid Fe III to Fe II ionization change. Finally, we present the first-ever optical-to-mid-infrared (MIR) nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (with T≈500T \approx 500 K), combined with prominent [O I] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within carbon/oxygen-rich CSM

    Ground-based and JWST Observations of SN 2022pul: II. Evidence from Nebular Spectroscopy for a Violent Merger in a Peculiar Type-Ia Supernova

    No full text
    International audienceWe present an analysis of ground-based and JWST observations of SN 2022pul, a peculiar "03fg-like" (or "super-Chandrasekhar") Type Ia supernova (SN Ia), in the nebular phase at 338 d post explosion. Our combined spectrum continuously covers 0.4-14 ÎŒ\mum and includes the first mid-infrared spectrum of an 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. Strong, broad, centrally peaked [Ne II] at 12.81 ÎŒ\mum was previously predicted as a hallmark of "violent merger'' SN Ia models, where dynamical interaction between two sub-MChM_{\text{Ch}} white dwarfs (WDs) causes disruption of the lower mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the central ejecta to better reproduce the optical iron emission, and add mass in the innermost region (<2000< 2000 km s−1^{-1}) to account for the observed narrow [O I] λλ6300\lambda\lambda6300, 6364 emission. A violent WD-WD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SN Ia
    corecore